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1 About PAGODA
PAGODA (Policy And GOal based Distributed Autonomy) is a modular architecture for design
of (partially) autonomous systems. A PAGODA node (agent) interacts with its environment by
sensing and affecting, driven by goals to achieve and constrained by policies. A PAGODA sys-
tem is a collection of PAGODA nodes cooperating to achieve some mutual goal. The PAGODA
architecture was inspired by study of architectures developed for autonomous space systems,
especially the MDS architecture [DRRS00] and its precursors [MPPW98].
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Figure 1: PAGODA node architecture
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Figure 1 shows the principal components of a PAGODA node: a knowledge base (KB),
a reasoner (R), a monitor (M), a ‘hardware’ abstraction layer (HAL), and a coordinator (C).
There is also a component for communication with a system operator (HQ for headquarters),
and a component responsible for distributed coordiation (DC).

The knowledgebase (KB) is the centerpiece. It contains knowledge that is shared and up-
dated by the remaining components. This knowledge inlcudes a wide range of information:

• Goals, what the node or system is trying to achieve. A goal could be a very high-level
goal such as carrying out a scientific experiment or mapping a region, or lower level
goals that correspond to actions that can be carried out.

• Policies, rules that constrain the actions / interactions a a node or system is allowed
to do. A policy might reduce the number of choices for setting parameters, computed
based on the device model, for example based on importance of different goals. Another
policy could determine trade-offs between speed and power usage. Other policies might
constrain what information is exchanged amongst PAGODA nodes, or other agents, and
how often.

• A device model that specifies the parameters that can be set (knobs) and read (sensors)
and their relationships. It should also specify how values sensed at different nodes can be
combined to determine non-local system properties, and the relationships of such local
and global measured properties to higher level goals. For example turning on a particular
security protocol can be used to achieve security goals guaranteed by that protocol.

• An environment model, representing relevant features of the environment that the node
might find itself in. For a mobile node this could include terrain information or building
maps.

• The current state, which includes values of variables determined by sensor readings and
deduced from actions and information collected from other nodes. It also includes ‘sit-
uation’ information such as the stage in a complex task/mission or progress towards
achieving a goal.

The HAL component is an interface to the sensors and affectors. It handles parameter
setting and sensor reading requests. In a real system the HAL might map requests to a format
that is understood by the actual hardware, or even to a lower level abstraction layer. The
intent is that these interactions should obey the ‘physics’ specified by the device model, but
the node needs to be prepared for things to go wrong—some hardware component breaks, the
environment is different than expected, it is being operated outside the expected operational
mode, and so on.

The HQ component in the other node interface to the external world. HQ transmits new
goals and policies from operators/administrators and generally provides a way of driving a
PAGODA system.

The job of the reasoner component is to determines proper parameter settings either in
response to new goals, starting a new stage of a current goal, or unexpected sensor values,
indicating that adjustments need to be made. The reasoner uses information from the KB as
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basis for its deductions: the device model, the goals and policies, and the current state. When
new parameter settings are determined, the reasoner also provides justifications such as what
sensor values and/or what relationships from the device model were used to infer the new
settings. This can be used for diagnostics if things don’t go as expected. The reasoner also
specifies sensors that should be monitored and conditions on sensor reading under which the
reasoner to be alerted to take corrective action.

The monitor component receives monitoring tasks from the reasoner, reads and evaluates
specified sensors, and sends alerts to the reasoner when sensor readings are not within specified
limits.

The coordiator component (C) mediates external interactions (with the HAL and with HQ).
Thus it can control order and frequency of interactions, and take care of keeping a history of
interactions (as specified by policy).

All components can query and update the KB. It behaves like an encapsulated object, han-
dling one request at a time.

The distributed coordination component (DC) is responsible for coordination amongst a
group of PAGODA nodes. It may request or transmit information from the KB or negotiate
tasks and policies in order to achieve some overall goal.

Future developments include adding a learning component (L) which monitors actions and
effects, evaluates them against the model and goals, and determines which strategies are better
for given objectives or situations. It may also proactively propose actions to test their effects
under certain conditions.

A formal executable specification of PAGODA architecture has been developed in the
Maude language [CDE+03a, CDE+03b] and instantiated with a very abstract device model
of a radio to test the ideas. Goals are treated as soft constraints on subsets of senor readings.
The relationships between affectors (knobs) and sensor readings and between sensor readings
and goals are formalized as constraint semi-rings, which provides a clean mathematical basis
for solving soft-constraints [BMR97, NFM+05]. The PAGODA node specification was com-
posed with a specification of a radio, MadRad, that simulates actual radio hardware/software
including random, unusual and faulty behavior and test scenario developed to illustrate possibly
system behaviors.

Ideas for specifying the distributed coordinator are being developed based on a logical
approach to distributed monitoring [SVAR04] and a distributed AI approach to distrubuted
problem solving [ML04a, ML04b].
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